DE LA RECHERCHE À L'INDUSTRIE

FRANCE'S PERSPECTIVES ON SUSTAINABLE ENERGY AND INTEGRATING DISTRIBUTED GENERATION

Frank CARRE

Scientific Director

Nuclear Energy Division of CEA (France)

www.cea.fr

University of Wisconsin – 2014 Energy Summit
October 29, 2014 - Madison WI USA

HOW DID FRANCE COME TO NUCLEAR POWER?

FRENCH FLEET OF NUCLEAR POWER PLANTS

Current French fleet of NPP

58 operating PWR:

34 / 900 MWe

e 💆

20 / 1300 MWe

 \bigcirc

4 / 1450 MWe

Projects:

1 EPR in construction

63 GWe

~ 415 net TWh

Average age ~29 years (2014)

Connection to grid:

- Fessenheim 1 (n^𝔞): 1977

- Civaux 2 (*n* 58) : 1999

~73% share of nuclear electricity

cea

NUCLEAR POWER FOR ENERGY SECURITY & CLIMATE

CO₂ Releases by the French Industry (Mt) 160 A significant 140 reduction in spite of 120 growth in demand 100 Energy ■ Energie **Electricity** 80 ■ Electricité 60 40 20

STEPS TOWARDS AN ENERGY POLICY FOR EUROPE

Towards a Low-carbon Energy Future

- 4/23/2006 Green Book on « Energy Policy for Europe » issued by the European Commission
- March 2007 A new Energy Policy for Europe proposed by the EC and endorsed by the Council

 → Negotiation of a European « Energy-Climate package » issued on Dec. 11-12, 2008
- 11/22/2007 European Strategic Energy Technology Plan (SET-Plan) setting European Commission goals for "2020 Climate-Energy Package"
 - 20% decrease in energy demand
 - **20%** cut in greenhouse gas emissions
 - **2**0% of renewable power generation
- → Creation of « Technology platforms » (Solar, Wind, 2G-Biofuels, CCS, Smart Grids...+ Fission (SNE-TP))
- <2005 European Union Emissions Trading System</p>
 - Price of released CO2 ton too low to spur reduction (<<25 €)</p>

TOWARDS A MORE DIVERSIFIED LOW CARBON ENERGY SYSTEM IN FRANCE

Developing renewable energies & Keeping the nuclear option open

Energy Policy Acts	Energy Security	Mitigating Climate change	Renewable Energies	Energy Efficiency	Others
Energy Policy Act 7/13/2005	+ Diversifying energy sources	Sustainable development CO ₂ emissions x1/4 by 2050 /1990	14% → 25% (2025)		Keeping the nuclear option open
« Grenelle de l'environnement » Act 1 6/24/2009 Act 2 7/13/2010 EU 2020 Climate-		-3% CO ₂ /y /1990 -20% EU GHG emissions (2020)	→ 23% (2020) 20% Renewable electricity in EU	EE incentives in buildings Norms for new builds <50 kWh/m²/y -20% EU energy	Incentives to electric & hybrid transport technologies
2014 Act for Energy Transition & Green Growth EU 2030 Climate-Energy Package	Mastering the energy bill → Decarbonization	-40% GHG emissions (2030) → Decarbonization -40% EU GHG emissions (2030)	(2020) 32% Renewable electricity (2030) >27% Renewable electricity in EU (2030)	-30% energy demand (2030) & -50% (2050) 500 000/y thermal insulation works in housing >27% Energy savings in EU (2030)	Nuclear capped to 63 GWe & 50% of electric power in 2025

COO TOWARDS A LOW CARBON ENERGY SYSTEM

2012 2050

Fossil energies

50 % of primary energy needs

Growing cost towards unbearable levels:

- 2003-2005 ► 10 % of export revenues (25 G€)
- 2010 ► 25 % of export revenues (48 G€)
- 2011 ▶ 35 % of export revenues (> 60 G€)

Renewable energies

9 % of primary energy needs

(15 % of electricity generation)

Nuclear power

41 % of primary energy needs

(75 % of electricity generation)

France's Primary Energy Consumption in 2010: 266 Mtoe

ELEMENTS OF FRANCE'S ENERGY POLICY

2030 goals of Energy Transition & Green Growth Act \rightarrow CO₂ releases x 1/4 by 2050

Reduction by 30% of the global primary energy consumption

Reduction by 40%
of greenhouse gas emissions
(compared to 1990)

32% share
of renewable energy
in the energy mix

- ☐ in industrial processes
- ☐ in housing
- ☐ in transport

Final energy consumption in France (2011)

21%

44%

Building

Transport

Industry

Agriculture

Nuclear and Renewable Energies:

Two pillars of the 2020 French energy mix:

- □ Renewables: intermittent supply
- Nuclear power: controllable power supply

☐ Preserve the use of fossil energies where they cannot be replaced

2014 ACT ON ENERGY TRANSITION & GREEN GROWTH

Objective:

- Diminishing the dependence from fossil fuels by reducing energy consumption and promoting renewable energies
- Progress towards a more efficient low carbon energy model that supports French citizens and economy's energy needs in a sustainable, fair and safe manner

Current lines of research

- Energy efficiency and sobriety
 - → Housing & Residential: 500 000 home insulation renovations per year
 - → *Transports:* increasing <u>fuel vehicle efficiency to 2 l/100 km (~115 mpg)</u> by 2025 and support the development of <u>electric</u>, <u>hybrid and hydrogen fuelled</u> vehicles
 - → *Industry:* strengthen energy efficiency and on site recovery of waste heat
- Renewable energies and nuclear as pillars for low carbon energy generation
 - → New tenders for solar and wind parks + off-shore windmills, Improved use of biomass
 - → Nuclear & Solar cogeneration (H₂, district heating, process heat...)
- **■** Electricity & Energy storage, Integration of power, H₂ and heat networks, CCS...
- Energy scenario studies (DGEC, RTE, NGOs, Industry, ADEME, ANCRE...)
 - Strengthened energy efficiency and sobriety
 - Energy efficiency and more (low carbon) electricity
 - Energy efficiency and diversifying energy carriers

ANCRE'S ENERGY SCENARIOS

First indications of trends

The management of intermittency

- & Factor 4 on CO₂ rely on:
 - Smart grids & CCS (SOB)
 - Storage of electricity (ELEC)
 - Cogeneration (DIV)

- → Nuclear power will remain an important share of electric generation
- → Meeting the factor-4 reduction of CO₂ calls for technology breakthroughs
- → The increasing share of intermittent renewables calls for sufficient monitorable generation for grid stability

Assumptions: 50% nuclear electricity in 2025, 100% back-up with gas power stations

District Heating from LWR Discharge Heat

<u>from Harri Tuomisto, Fortum Power, Finland,</u> <u>Loviisa 3 project - October 2010</u>

EU FRAMEWORK FOR GLOBAL CLIMATE & ENERGY GOALS WITH DIVERSIFIED NATIONAL ENERGY MIX

Common goals

- Energy efficiency
- Reduction of GHG
- Growth of renewable energies

Specific features

- Historic energy mix (coal, nuclear, hydro)
- Energy networks & storage + capacity
- Integrating variable renewable energies

Issues

- ~40% variable power limit for grid stability
- Control must-take power from abroad
- Account for system costs for renewables
 - Back-up, Balancing
 - Grid connection & extension

PRINCIPLE OF SMART GRIDS TO BALANCE POWER SUPPLY AND DEMAND AT NATIONAL & LOCAL LEVELS

Power supply

- Increased planning for variable energies
- Load following
- Storage
- Combined heat and power (CHP)
- Capacity market
- Energy efficient buildings

Transmission & Distribution

- Dynamic distribution
- Smart metering
- Balancing demand & supply

Power demand

- Increased planning for power demand
- Peak shaving & load shifting at household & regional levels
- Electrification of transport & Industry

TOWARDS SUSTAINABLE ENERGY FOR GLOBAL CITIES

Global Cities called to increasingly manage their energy

While generating part of their low carbon energy needs

Heat	Electr	icity	Fuel
Heat recovery Wood-fire generator	Cogeneration Biomass, incineration of waste •	Solar PV Wind-power Hydro-power	Biomethane Hydrogen Synthetic hydrocarbon gazeous & liquid fuels

While locally balancing energy demand & supply (elec, gas, heat...)

- Development, deployment & clustering of energy storage (electricity, heat)
- Combining cut-offs (industry, municipal venues ...)
- Encouragement for on site consumption for private energy supplier
- Energy management: measuring & managing use (BBC, smart-meters, ...)
- Options for investments in infrastructures (energy efficient new districts, energy self-sufficient, and even energy-positive...)

New missions for global cities, new services to be developed around energy grids... and other linked services?

Issues: Legal obligation to implement smart technologies as in the US and EU

- Dynamic regulation of local grids + Regulation Power supply by Central Generation & Transmission
- Massive investments needed in new infrastructures, sensors & controls. Financial incentives?
- Prising cost of energy? More flexible pricing mechanisms → Increased complexity? Lack of transparency?

GLOBAL CITIES: A COMPLEX SYSTEM OF INTERCONNECTED NETWORKS

FRANCE'S PERSPECTIVE ON SUSTAINABLE ENERGY FOR GLOBAL CITIES

Energy transitions in France

- (1950-2000) Nuclear energy for energy security: an historical decision with a strong political support magnified by oil shocks of the 1970s
 - Deployment of French Fleet of 58 LWR Nuclear Power Plants
- (> 2000) − Diversifying energy sources and keeping the nuclear option open in a low carbon energy mix − Convergence with EC Energy Goals
 - Energy Policy Act (7/13/2005)
 - A European Strategic Energy Technology Plan (11/22/2007)
- **■** > 2014 Further integration within the European energy system
- 2014 Act on Energy Transition and Green Growth
 - Energy efficiency & displacing fossil fuels for a low carbon energy future (¼ CO₂ by 2050)
 - Development of renewable energies & Integration with nuclear power capped at 63 GWe
 - → Challenges ahead:
 - Management strategy for grid stability with an increasing share of variable renewables
 - Smart grids for a dynamic balancing of power supply and demand with an increasing share of distributed generation
 - Massive investments in infrastructures, sensors, controls and home renovation works
 - Technology breakthroughs (i.e. R&D) and significant behavioral changes required
 - → Economic viability and social acceptance of planned Energy transition still to be proven