

# Manure Management: Systems Analysis and Decision-Making

#### Victor M. Zavala

Scalable Systems Laboratory Department of Chemical & Biological Engineering University of Wisconsin-Madison

http://zavalab@engr.wisc.edu







## **Manure Management**



#### Some Info:

U.S. Farm Animals Produce <u>2 Times</u> the Amount of Waste of Entire Human Population Single Dairy Cow Generates 20 Tons of Waste/year There are 9 Million Cows in the U.S. (1.2 Million in Wisconsin)

#### **Questions:**

- What are Key Technologies and Locations Given Constrained Budgets?
- What are Optimal Investment, Financing, and Transportation Strategies?
- How to Reconcile Priorities (Geographical/Phosphorus/Methane/Health/Not-in-my-Backyard)?
- How to Deal with Complexity?

## **Food-Water-Energy Nexus**



## **Navigating Complexity**



## **Navigating Complexity**



## **Resolving Conflicts Among Stakeholders**

#### **Multi-Objective Optimization**

$$\min_{x} \{f_1(x), f_2(x), ..., f_N(x)\}$$
  
s.t.  $g(x) \le 0$ 

#### Weighted Form

$$\min_{x} w_1 f_1(x) + w_2 f_2(x) + \ldots + w_N f_N(x) \qquad \min_{x} \mathbf{w}^T \mathbf{f}(x)$$
  
s.t.  $g(x) \le 0$  s.t.  $g(x) \le 0$ 



#### Goals:

- Multiple Decision-Makers and  $\mathbf{Priorities} \to \operatorname{Ambiguity},$  Disagreement
- Identify Alternatives that Maximize Collective Satisfaction
- Identify  $\mathbf{Impact}\ \mathbf{of}\ \mathbf{Opinions}$  on Final Decision



Low Cost High Environmental Impact

Power Plant I





Stakeholders





Stakeholders





Stakeholders

## **Computational Tools**



### **Case Studies on Struvite and Biogas Recovery**



#### Goals:

- Consider manure of  $100\ largest\ CAFOs$  in the State of Wisconsin
- Identify optimal **sizing and location** for struvite and biogas recovery
- Consider a spectrum of **available budgets**
- Reconcile **priorities** from different types of **stakeholders**
- Analyze impact of **final destinations** of recovered products on system layout

## **Case Studies (Struvite Recovery)**



| Budget    | $arphi_I$           | $arphi_f$ | $\sum a_{i}$         | $arphi_{	t str}$   | $\phi_u$ | $h_{\tt Waste}$ | $h_{\tt str}$ | $arphi_{f,waste}$ | $arphi_{f,str}$ |
|-----------|---------------------|-----------|----------------------|--------------------|----------|-----------------|---------------|-------------------|-----------------|
| (USD/day) | (USD)               | (USD/day) | $\sum_{n,t} g_{n,t}$ | (kg/day)           | (%)      | (km/day)        | (km/day)      | (USD/day)         | (USD/day)       |
| 500,000   | $102.95\times10^6$  | 485,898   | 101                  | $6.59 	imes 10^5$  | 0.00     | 34.97           | 170.02        | 448,014           | 37,281          |
| 70,000    | $102.61\times 10^6$ | 55,944    | 100                  | $6.59 	imes 10^5$  | 0.00     | 47.86           | 144.69        | 18,557            | 37,387          |
| 55,000    | $102.27\times 10^6$ | 40,991    | 100                  | $6.30 	imes 10^5$  | 4.43     | 22.81           | 346.16        | 5,342             | 35,649          |
| 45,000    | $93.60 \times 10^6$ | 32,179    | 96                   | $5.59 	imes 10^5$  | 15.13    | 7.21            | 341.99        | 818               | 31,361          |
| 35,000    | $75.10 	imes 10^6$  | 24,713    | 77                   | $4.53 \times 10^5$ | 31.27    | 6.81            | 328.29        | 532               | 24,181          |
| 25,000    | $57.30 	imes 10^6$  | 17,151    | 59                   | $3.41 	imes 10^5$  | 48.18    | 6.72            | 300.44        | 405               | 16,746          |
| 15,000    | $38.38 \times 10^6$ | 9,742     | 41                   | $2.24 \times 10^5$ | 65.94    | 5.47            | 257.38        | 213               | 9,530           |
| 10,000    | $28.78\times10^{6}$ | 6,058     | 32                   | $1.63 	imes 10^5$  | 75.25    | 4.97            | 216.14        | 177               | 5,881           |
| 5,000     | $16.70 	imes 10^6$  | 2,713     | 18                   | $0.95 	imes 10^5$  | 85.57    | 0.95            | 164.58        | 25                | 2,688           |
| 3,000     | $11.01 \times 10^6$ | 1,492     | 12                   | $0.63 	imes 10^5$  | 90.45    | 0.43            | 132.30        | 10                | 1,481           |

### **Case Studies (Struvite + Biogas Recovery)**



#### Ideal Stakeholder Solutions

| Stakeholder | W <sub>str</sub><br>(%) | W <sub>bio</sub><br>(%) | $arphi_{	t str}$ (kg/day) | $arphi_{	t bio}\ ({	t m}^3/{	t day})$ | $\varphi_I$ (USD)      | $arphi_f$ (USD/day) | $arphi_{f, 	extsf{waste}}$ (USD/day) | $arphi_{f, 	ext{str}}$ (USD/day) |
|-------------|-------------------------|-------------------------|---------------------------|---------------------------------------|------------------------|---------------------|--------------------------------------|----------------------------------|
| Ι           | 100                     | 0                       | $2.24 \times 10^{5}$      | 0.00                                  | $38.07 \times 10^{6}$  | 9,786               | 278                                  | 9,508                            |
| II          | 0                       | 100                     | 0.00                      | $2.33 \times 10^5$                    | $105.48 \times 10^{6}$ | 550                 | 550                                  | 0                                |
| III         | 50                      | 50                      | $1.08 \times 10^5$        | $1.45 \times 10^5$                    | $85.12 \times 10^6$    | 3,340               | 109                                  | 3,231                            |
| IV          | 33                      | 67                      | $3.38 \times 10^3$        | $2.30 \times 10^5$                    | $104.82 \times 10^{6}$ | 641                 | 600                                  | 41                               |
| V           | 67                      | 33                      | $2.24 \times 10^5$        | 0.00                                  | $38.41 \times 10^{6}$  | 9,739               | 369                                  | 9,370                            |

#### **Compromise Solutions**

| в   | $arphi_{	t str}$   | $arphi_{	t bio}$      | $\varphi_I$           | $arphi_f$ | $arphi_{f, \mathtt{waste}}$ | $arphi_{f, {	t str}}$ | $d_I$ | $d_{II}$ | $d_{III}$ | $d_{IV}$ | $d_V$ |
|-----|--------------------|-----------------------|-----------------------|-----------|-----------------------------|-----------------------|-------|----------|-----------|----------|-------|
| β   | (kg/day)           | (m <sup>3</sup> /day) | (USD)                 | (USD/day) | (USD/day)                   | (USD/day)             | (%)   | (%)      | (%)       | (%)      | (%)   |
| 0   | $1.24 \times 10^5$ | $1.29 \times 10^5$    | $79.47 \times 10^6$   | 4,114     | 225                         | 3,889                 | 45    | 45       | 0         | 12       | 12    |
| 0.5 | $1.25 \times 10^5$ | $1.29 \times 10^5$    | $79.23 \times 10^{6}$ | 4,147     | 130                         | 4017                  | 46    | 43       | 0         | 11       | 12    |
| 0.7 | $1.22 \times 10^5$ | $1.32 \times 10^5$    | $80.54 \times 10^{6}$ | 3,967     | 109                         | 3,858                 | 47    | 42       | 0         | 11       | 13    |
| 1   | $1.07 \times 10^5$ | $1.45 \times 10^5$    | $84.41 \times 10^6$   | 3,436     | 205                         | 3,231                 | 54    | 35       | 0         | 8        | 15    |

### **Case Studies (Struvite + Biogas Recovery)**

**Compromise Solution** (Single Collection Point)



**Compromise Solution** (Multiple Collection Points)



Key: Final use of recovered products influences technology placement.



• A Multi-Scale Platform for Technology Evaluation and Decision-Making in the Dairy-Water-Energy Nexus, U.S. Department of Agriculture, 2016-2018.



• Multi-Stakeholder Decision-Making for the Development of Livestock Waste-to-Biogas Systems, National Science Foundation-CBET, 2016-2018.



# Manure Management: Systems Analysis and Decision-Making

#### Victor M. Zavala

Scalable Systems Laboratory Department of Chemical & Biological Engineering University of Wisconsin-Madison

http://zavalab@engr.wisc.edu





