Manure Management:
Systems Analysis and Decision-Making

Victor M. Zavala

Scalable Systems Laboratory
Department of Chemical & Biological Engineering
University of Wisconsin-Madison

http://zavalab@engr.wisc.edu
Manure Management

Some Info:
U.S. Farm Animals Produce **2 Times** the Amount of Waste of Entire Human Population
Single Dairy Cow Generates 20 Tons of Waste/year
There are 9 Million Cows in the U.S. (1.2 Million in Wisconsin)

Questions:
- What are Key Technologies and Locations Given Constrained Budgets?
- What are Optimal Investment, Financing, and Transportation Strategies?
- How to Reconcile Priorities (Geographical/Phosphorus/Methane/Health/Not-in-my-Backyard)?
- How to Deal with Complexity?
Food-Water-Energy Nexus

- Methane
- P/N
- CO₂
- Water
- Electricity

System Boundary

- WWTP Landfill Sector
- Electrical Sector
- Natural Gas Sector

Agricultural Sector
- Fertilizer Imports
- Struvite Biochar Exports

Urban Sector
- Dairy Products
- Crops/Manure
- Biosolids

Water
- Runoff
- Rain/Evaporation

Soil
- Manure

Dairy Sector
- Dairy Exports

Atmosphere

Biogas

Rain

P/N and Biogas are exchanged among the sectors.
Navigating Complexity

[Diagram showing different networks and facilities like Dairy Farm, Landfill, Combined Heat & Power, Regional Network, Local Network, and WWTP, with geographical coordinates and markers for each location.]
Navigating Complexity

Map of Wisconsin with a pie chart indicating the distribution of phosphorus sources:
- Point Sources: 41,242 (22%)
- Background: 13,057 (7%)
- NP Urban: 5,711 (3%)
- MS4 Urban: 48,659 (25%)
- Ag Non Point: 82,814 (43%)

Legend:
- Phosphorus (kg/ha/yr)
- Scale:
 - 0
 - 0.04
 - 0.10
 - 0.14
 - 0.18
 - 0.23
 - 0.29
 - 0.40
 - 0.52

Color gradient from light yellow to dark red represents the concentration of phosphorus.
Resolving Conflicts Among Stakeholders

Multi-Objective Optimization

\[
\min_x \{ f_1(x), f_2(x), \ldots, f_N(x) \}
\]
\[
\text{s.t. } g(x) \leq 0
\]

Weighted Form

\[
\min_x w_1 f_1(x) + w_2 f_2(x) + \ldots + w_N f_N(x)
\]
\[
\text{s.t. } g(x) \leq 0
\]

Goals:
- Multiple Decision-Makers and **Priorities** → Ambiguity, Disagreement
- Identify Alternatives that **Maximize Collective Satisfaction**
- Identify **Impact of Opinions** on Final Decision

High Cost
Low Environmental Impact

Low Cost
High Environmental Impact

Power Plant I
Power Plant II

Stakeholders

Stakeholders

Stakeholders
Computational Tools

Nutrient Management
- SnapPlus

Soil and Simulator
- SWAT
- Multi-Network Model
- Data Processing
- Hierarchical Aggregator
- Nexus Model

Farm Management
- USDA
- IFSM
- Users
- JuliaBox

Infrastructure Data
- Grid
- Gas

Computing Cluster
- Computing Cluster

Multi-Scale Algorithms
- MPICH-2
- OpenMP
- CPLEX
- Gurobi
- PIPS
- PETSc
- Magma
- CBC
- Soplex

Hierarchy Aggregator

Scenario Generator

LCA Metrics
Case Studies on Struvite and Biogas Recovery

Goals:

- Consider manure of **100 largest CAFOs** in the State of Wisconsin
- Identify optimal **sizing and location** for struvite and biogas recovery
- Consider a spectrum of **available budgets**
- Reconcile **priorities** from different types of **stakeholders**
- Analyze impact of **final destinations** of recovered products on system layout
Case Studies (Struvite Recovery)

Unconstrained Budget

Constrained Budget

<table>
<thead>
<tr>
<th>Budget (USD/day)</th>
<th>φ_f (USD)</th>
<th>φ_f (USD/day)</th>
<th>$\sum_{n,t} y_{n,t}$</th>
<th>φ_{str} (kg/day)</th>
<th>ϕ_u (%)</th>
<th>h_{Waste} (km/day)</th>
<th>h_{str} (km/day)</th>
<th>$\varphi_{f,\text{waste}}$ (USD/day)</th>
<th>$\varphi_{f,\text{str}}$ (USD/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500,000</td>
<td>102.95 x 10^6</td>
<td>485,898</td>
<td>101</td>
<td>6.59 x 10^5</td>
<td>0.00</td>
<td>34.97</td>
<td>170.02</td>
<td>448,014</td>
<td>37,281</td>
</tr>
<tr>
<td>70,000</td>
<td>102.61 x 10^6</td>
<td>55,944</td>
<td>100</td>
<td>6.59 x 10^5</td>
<td>0.00</td>
<td>47.86</td>
<td>144.69</td>
<td>18,557</td>
<td>37,387</td>
</tr>
<tr>
<td>55,000</td>
<td>102.27 x 10^6</td>
<td>40,991</td>
<td>100</td>
<td>6.30 x 10^5</td>
<td>4.43</td>
<td>22.81</td>
<td>346.16</td>
<td>5,342</td>
<td>35,649</td>
</tr>
<tr>
<td>45,000</td>
<td>93.60 x 10^6</td>
<td>32,179</td>
<td>96</td>
<td>5.59 x 10^5</td>
<td>15.13</td>
<td>7.21</td>
<td>341.99</td>
<td>818</td>
<td>31,361</td>
</tr>
<tr>
<td>35,000</td>
<td>75.10 x 10^6</td>
<td>24,713</td>
<td>77</td>
<td>4.53 x 10^5</td>
<td>31.27</td>
<td>6.81</td>
<td>328.29</td>
<td>532</td>
<td>24,181</td>
</tr>
<tr>
<td>25,000</td>
<td>57.30 x 10^6</td>
<td>17,151</td>
<td>59</td>
<td>3.41 x 10^5</td>
<td>48.18</td>
<td>6.72</td>
<td>300.44</td>
<td>405</td>
<td>16,746</td>
</tr>
<tr>
<td>15,000</td>
<td>38.38 x 10^6</td>
<td>9,742</td>
<td>41</td>
<td>2.24 x 10^5</td>
<td>65.94</td>
<td>5.47</td>
<td>257.38</td>
<td>213</td>
<td>9,530</td>
</tr>
<tr>
<td>10,000</td>
<td>28.78 x 10^6</td>
<td>6,058</td>
<td>32</td>
<td>1.63 x 10^5</td>
<td>75.25</td>
<td>4.97</td>
<td>216.14</td>
<td>177</td>
<td>5,881</td>
</tr>
<tr>
<td>5,000</td>
<td>16.70 x 10^6</td>
<td>2,713</td>
<td>18</td>
<td>0.95 x 10^5</td>
<td>85.57</td>
<td>0.95</td>
<td>164.58</td>
<td>25</td>
<td>2,688</td>
</tr>
<tr>
<td>3,000</td>
<td>11.01 x 10^6</td>
<td>1,492</td>
<td>12</td>
<td>0.63 x 10^5</td>
<td>90.45</td>
<td>0.43</td>
<td>132.30</td>
<td>10</td>
<td>1,481</td>
</tr>
</tbody>
</table>
Case Studies (Struvite + Biogas Recovery)

Ideal Stakeholder Solutions

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>(w_{\text{str}}) (%)</th>
<th>(w_{\text{bio}}) (%)</th>
<th>(\varphi_{\text{str}}) (kg/day)</th>
<th>(\varphi_{\text{bio}}) (m³/day)</th>
<th>(\varphi_I) (USD)</th>
<th>(\varphi_f) (USD/day)</th>
<th>(\varphi_{f,\text{waste}}) (USD/day)</th>
<th>(\varphi_{f,\text{str}}) (USD/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>100</td>
<td>0</td>
<td>(2.24 \times 10^5)</td>
<td>0.00</td>
<td>(38.07 \times 10^6)</td>
<td>9,786</td>
<td>278</td>
<td>9,508</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>100</td>
<td>0.00</td>
<td>(2.33 \times 10^5)</td>
<td>(105.48 \times 10^6)</td>
<td>550</td>
<td>550</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>50</td>
<td>50</td>
<td>(1.08 \times 10^5)</td>
<td>(1.45 \times 10^5)</td>
<td>(85.12 \times 10^6)</td>
<td>3,340</td>
<td>109</td>
<td>3,231</td>
</tr>
<tr>
<td>IV</td>
<td>33</td>
<td>67</td>
<td>(3.38 \times 10^4)</td>
<td>(2.30 \times 10^5)</td>
<td>(104.82 \times 10^6)</td>
<td>641</td>
<td>600</td>
<td>41</td>
</tr>
<tr>
<td>V</td>
<td>67</td>
<td>33</td>
<td>(2.24 \times 10^5)</td>
<td>0.00</td>
<td>(38.41 \times 10^6)</td>
<td>9,739</td>
<td>369</td>
<td>9,370</td>
</tr>
</tbody>
</table>

Compromise Solutions

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\varphi_{\text{str}}) (kg/day)</th>
<th>(\varphi_{\text{bio}}) (m³/day)</th>
<th>(\varphi_I) (USD)</th>
<th>(\varphi_f) (USD/day)</th>
<th>(\varphi_{f,\text{waste}}) (USD/day)</th>
<th>(\varphi_{f,\text{str}}) (USD/day)</th>
<th>(d_{I}) (%)</th>
<th>(d_{II}) (%)</th>
<th>(d_{III}) (%)</th>
<th>(d_{IV}) (%)</th>
<th>(d_{V}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1.24 \times 10^5)</td>
<td>(1.29 \times 10^5)</td>
<td>(79.47 \times 10^6)</td>
<td>4,114</td>
<td>225</td>
<td>3,889</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.5</td>
<td>(1.25 \times 10^5)</td>
<td>(1.29 \times 10^5)</td>
<td>(79.23 \times 10^6)</td>
<td>4,147</td>
<td>130</td>
<td>4017</td>
<td>46</td>
<td>43</td>
<td>0</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>0.7</td>
<td>(1.22 \times 10^5)</td>
<td>(1.32 \times 10^5)</td>
<td>(80.54 \times 10^6)</td>
<td>3,967</td>
<td>109</td>
<td>3,858</td>
<td>47</td>
<td>42</td>
<td>0</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>(1.07 \times 10^5)</td>
<td>(1.45 \times 10^5)</td>
<td>(84.41 \times 10^6)</td>
<td>3,436</td>
<td>205</td>
<td>3,231</td>
<td>54</td>
<td>35</td>
<td>0</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>
Case Studies (Struvite + Biogas Recovery)

Compromise Solution
(Single Collection Point)

Compromise Solution
(Multiple Collection Points)

Key: Final use of recovered products influences technology placement.
Acknowledgements

Manure Management: Systems Analysis and Decision-Making

Victor M. Zavala

Scalable Systems Laboratory
Department of Chemical & Biological Engineering
University of Wisconsin-Madison

http://zavalab@engr.wisc.edu