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United States Energy Flows
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Wisconsin Energy Flows
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Source: LLNL 2010. Data is based on DOE/EIAO214(2008), June 2010, If this information or a reproduction of it is used, credit must be given 10 the Lawrence Livermore Natiosal Laboratory and the Departssent
of Energy, under whose auspices the work was performed. Distributed electricity represents only retall electricy sales and does not include self generation. EIA reports flows for nonthermal resources
(Le, hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel phm "heat rate” The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary
energy input into electricity gemeration. Interstate and intermational electricity trade are lamped into net imports or exports and are calculated wsing a system-wide generation efficiency. [nd use cﬂ‘mnnq I3 estimated
a5 65% for the residential, 7O% for the commercial, 30% for the industrial sector, and as 25% for the transportation sector. Totals may not equal sum of P due to P 9. LULNL- M8 410527




Washington State Energy Flows
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U.S. Energy Sources: Historical
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% of Total Energy Use From Biomass
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Biomass Energy Use by Country

Source Data: Earth Trends Data Tables: Energy Consumption by Source, 2005.
http://earthtrends.wri.org/datatables/index.php?theme=6




Energy — Water Nexus

(Quads / year)

(Billion gallons/day)

Energy reported in Quads/year. Water reported in Billion Gallons/Day.

Hybrid Sankey diagram of 2011 U.S. interconnected water and energy flows.
. From: The Water-Energy Nexus: Challenges and Opportunties, DOE, June 2014
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World GHG Emissions Flow Chart
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Today s Biofuel Ethanol Technology

Conversion of sugar cane (glucose) or corn starch (glucose
polymer) to ethanol
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The Mission of GLBRC

To perform the basic
research that generates
' e} technology to convert
2 .~ 2 cellulosic biomass into
\5/ sustainable biofuels.
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Great Lakes Bioenergy Research Center

Biofuels

A
D)

Lignin Conversion Biochemicals

Field (ecosystems, plants, microbes, air, water)
Laboratory (molecular, genomic, atomic)

Multi-scale modeling (molecules, cells, ecosystems &
refineries)

. www.glbrc.org
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United States DOE Bioenergy Research Centers

DOE Joint BioEnergy Institute
Lawrence Berkeley National Laboratory
Berkeley, California

Carnegie Institution for Science at Stanford University
Palo Alto, California

Madison

University of California
Berkeley

Lawrence Livermore National Laboratory
Livermore, California

Sandia National Laboratories
Livermore, California

— University of California
Davis

Sandia National Laboratories
Albuquerque, New Mexico

DOE Great Lakes Bioenergy Research Center
University of Wisconsin

Pacific Northwest National Laboratory
Richland, Washington

lowa State University
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Illinois State University
Normal

Lucigen Corporation
Middleton, Wisconsin

Qak Ridge, Tennessee

Michigan State
Universi
East Lansing

[l DOE Joint BioEnergy Institute (JBEI) and Partners
A\ DOE Great Lakes Bioenergy Research Center (GLBRC) and Partners
0 DOE BioEnergy Science Center (BESC) and Partners

Oak Ridge National Laboratory

= DOE BioEnergy Science Center
Oak Ridge National Laboratory
Qak Ridge, Tennessee

Cornell University
Ithaca, New York

Dartmouth College
Hanover, New Hampshire

Verenium Corporation
Cambridge, Massachusetts

Mascoma Corporation
Boston, Massachusetts

Brookhaven National Laboratory
Upton, New York

Virginia Polytechnic
Institute and State University
Blacksburg

University of Tennessee
Knoxville

North Carolina State University
Raleigh

University of Georgia
Athens

Georgia Institute of Technology
Atlanta

ArborGen
Summerville, South Carolina

University of Minnesota
St. Paul

The Samuel Roberts
Noble Foundation
Ardmore, Oklahoma

National Renewable
Energy Laboratory
Golden, Colorado

\ Washington State University

Pullman

T University of California
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What is Cellulose?
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What is Cellulose?
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What is Cellulose?

Bioenergy Crop

Cellulose
Plant Cells Microfibril

Plant Cell Wall

Sugar
Molecules

Glucose

Lignin
Hemicellulose

Cellulose

@ Wisconsin Energy Institute
UNIVERSITY OF WISCONMIN-MADISON



Conversion of Cellulosic Plant Biomass to Fuels

Plantcels Tomorrow’s technology
(GLBRC)

Plant biomass
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Today s technology
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@ Wisconsin Energy Institute
UNIVERSITY OF WISCONMIN-MADISON




NET CARBON
Conversion EMISSIONS:
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Varieties of corn for bioenergy

Plant Breeding for
Greater Biofuels
Potential
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Bioprospecting - Thermophiles at Yellowstone
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Metabolic Pathways to a Diversity of Biofuels

C5,C6 sugars
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@ adapted from Connor & Liao, Curr. Op. Biotech., 2009.
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