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Why research IC engine efficiency?
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 Internal combustion engines are used in a variety of applications
from transportation to power generation

« 70% of all crude oil consumed is used to fuel internal combustion
engines
» United States spends more than 3% of GDP on oil to fuel IC engines

« |C engines are expected to be the dominant (>90%) prime
mover for transportation applications well into the future
(projections through 2050)1"2:3

« Improvements in the efficiency of IC engines can have a major
impact on fossil fuel consumption and green house gas (GHG)
emissions on a global scale

— A 1% improvement in efficiency equates to a fuel savings of ~$4 billion per
year

'Quadrennial Technology Review, DOE 2011

2Review of the Research Program of the FreedomCAR and Fuel
Partnership: 3rd Report, NRC 2010

3/15 3Energy Information Agency, Annual Energy Outlook 2012, June 2012.




Maximizing Engine Efficiency
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Fuel energy is wasted due to:

— Incomplete combustion (i.e.,
combustible material flowing
out the exhaust)

— Heat transfer losses to the
coolant, oil, and air

— Unrecovered exhaust energy

— Pumping losses

— Friction losses

Research goal is to maximize
the BTE by developing a
fundamental understanding of
pathways leading to high
efficiency energy conversion
and proposing techniques to
achieve this goal
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Advanced Combustion Modes

+ |deal combustion system has a high
compression ratio using a lean, well-mixed
charge, resulting in a short burn duration
near TDC with temperatures between
1500 K and 2000 K

2.0

* With the correct selection of
conditions, PCIl combustion Fuel Rich
have all the traits of the ideai |
combustion system

— Lean well mixed charge ‘
— Short burn duration Fuel Lean
— High compression ratio ‘L

Premixed Compression Ignition (I?TCI) -

-
(@)

In

Equivalence Ratio
o

0.5

oo
onN

« Fuel and air are well
mixed (like S| comb.)

« Compression ignition
(like diesel comb.)

« Combustion controlled
by chemistry (comb.
Control is a challenge)
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Advanced Combustion Modes

Highly-premixed compression ignition (PCI) strategies offer attractive
emissions and performance characteristics; however, in practice PCI
strategies are generally confined to low-load operation due to

— lack of adequate combustion phasing control

— difficulties controlling the rate-of-heat release (combustion noise)
Common fuels (e.g., gasoline and diesel fuel) have different auto-
ignition characteristics

— Diesel fuel is easy to ignite (high reactivity) — good for low load/low temp.
— Gasoline is difficult to ignite (low reactivity) — good for high load/high temp

This work proposes in-cylinder fuel blending of two fuels with different
auto-ignition characteristics to simultaneously control combustion

phasing and rate-of-heat release High Reactivity Fuel
(Diesel fuel, bio-

Alternative combustion mode diesel, DME, etc.. ~ Fuel
controlled by fuel reactivity > | Delivery Strategy
Reactivity Controlled Compression
Ignition (RCCI) combustion

Low Reactivity
Fuel (Gasoline,
" ethanol, natural
gas etc...)
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Demonstration of RCCI Performance 7%
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Hanson et al. SAE 2010-01-0864
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What are the dominant mechanisms
controlling RCCI| combustion?

Answer this question using
optical engine experiments.

Optical engine has several
windows allowing imaging of
the spray, mixing, and
combustion process
High speed
chemiluminescence imaging
— Evaluate overall reaction zone
growth
Fuel tracer fluorescence
imaging
— Relate the fuel distribution prior to

ignition to the reaction zone
progression

— Evaluate heat release rate control
using spatial stratification of fuel
reactivity
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Load: 4.2 bar IMEP GDI SOl:

Speed: 1200 rpm n-heptane SOI: -57°/-37° ATDC
Intake Temperature: 90° C Iso-octane mass %: 64
Intake Pressure: 1.1 bar abs. Effective gain:

AHRR [J/©1

Crank [° ATDC]

"'_-ﬁ-

Bowl Window Cylinder Head Window
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Diagnostic Overview
» In-cylinder fuel distribution measurements using fuel 1. Fuels doped with 1% toluene
tracer fluorescence imaging 2. Toluene fluorescence excited
« Image shortly before low-temperature heat release by 266 nm (UV) laser sheet
shows a stratified local octane # (PRF) distribution 3. Fluorescence images
resulting from the direct-injection event processed to show fuel
« Most reactive region (minimum octane #) is located distribution

near the center of the piston bowl rim

« Reactivity decreases (octane # increases) toward the
center of the combustion chamber
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RCCI| Combustion Summary

Kokjohn et al. SAE 2011-01-0357
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«  The combustion duration is 20
controlled by spatial stratification
in the fuel reactivity
| RCCI combustion address the
two primary issues of PCI
combustion Sl

Kokjohn et al. SAE Int. J. of Engines 2012
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Can bio-derived fuels be used for RCCI? “

120

« RCCI depends on auto-ignition
characteristics of the charge -2
controlled by in-cylinder blending

« RCClI is inherently fuel flexible (with
two fuels with different auto-ignition
characteristics)
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 Example, ethanol is less reactive
than gasoline and bio-diesel is
(typically) more reactive than diesel
fuel - larger differences in auto-
ignition characteristics - great fuels
for RCCI| combustion!
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Gasoline-diesel RCCI is compared to
E85-diesel RCCI combustion

E85-diesel DF RCCI exhibits significantly
reduced HRR compared to gasoline-
diesel RCCI - quieter operation and
extended load range

Both show near zero levels of NOx and
GIE significantly above state of the art
diesel engines (diesel GIE ~49% at peak)
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Conclusions

A dual fuel PCI concept is proposed using in-cylinder blending of
two fuels with different auto-ignition characteristics

Controlled PCI operation demonstrated with very high efficiency and
near zero NOx and soot emissions over a range of loads

New combustion concept addresses the two primary issues limiting
acceptance of PCl combustion

— Combustion phasing is easily controlled by adjusting the overall fuel
reactivity (e.g., gasoline-to-diesel ratio)

— Combustion duration is controlled by introducing spatial stratification
into the auto-ignition characteristics of the charge

RCCI combustion is inherently fuel flexible and well-suited for use

with bio-derived fuels - engine adapts to fuel ignition characteristics
on-the-fly to maintain peak efficiency
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