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Outline 

•  Motivation for investigating internal combustion (IC) 
engine efficiency 

•  Requirements for high-efficiency combustion 
•  A pathway to high-efficiency clean combustion using in-

cylinder blending of fuels with different auto-ignition 
characteristics 
–  Conventional fuels 
–  Details of combustion process 
–  Alternative fuels 

•  Conclusions 
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Why research IC engine efficiency? 

•  Internal combustion engines are used in a variety of applications 
from transportation to power generation 

•  70% of all crude oil consumed is used to fuel internal combustion 
engines 
•  United States spends more than 3% of GDP on oil to fuel IC engines 

•  IC engines are expected to be the dominant (>90%) prime 
mover for transportation applications well into the future 
(projections through 2050)1,2,3 

•  Improvements in the efficiency of IC engines can have a major 
impact on fossil fuel consumption and green house gas (GHG) 
emissions on a global scale 
–  A 1% improvement in efficiency equates to a fuel savings of ~$4 billion per 

year 

1Quadrennial Technology Review, DOE 2011 
2Review of the Research Program of the FreedomCAR and Fuel 
Partnership: 3rd Report, NRC 2010   
3Energy Information Agency, Annual Energy Outlook 2012, June 2012.  
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Maximizing Engine Efficiency 

•  Fuel energy is wasted due to: 
–  Incomplete combustion (i.e., 

combustible material flowing 
out the exhaust) 

–  Heat transfer losses to the 
coolant, oil, and air 

–  Unrecovered exhaust energy 
–  Pumping losses  
–  Friction losses 

•  Research goal is to maximize 
the BTE by developing a 
fundamental understanding of 
pathways leading to high 
efficiency energy conversion 
and proposing techniques to 
achieve this goal 
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Advanced Combustion Modes 

•  Ideal combustion system has a high 
compression ratio using a lean, well-mixed 
charge, resulting in a short burn duration 
near TDC with temperatures between 
1500 K and 2000 K 

•  Fuel and air are well 
mixed (like SI comb.) 

•  Compression ignition 
(like diesel comb.) 

•  Combustion controlled 
by chemistry (comb. 
Control is a challenge) 

Premixed Compression Ignition (PCI) 
•  With the correct selection of 

conditions, PCI combustion can 
have all the traits of the ideal 
combustion system 

–  Lean well mixed charge 
–  Short burn duration 
–  High compression ratio 

SI 
Comb. 

Fuel Rich 

Fuel Lean 
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Advanced Combustion Modes 

•  Highly-premixed compression ignition (PCI) strategies offer attractive 
emissions and performance characteristics; however, in practice PCI 
strategies are generally confined to low-load operation due to  
–  lack of adequate combustion phasing control 
–  difficulties controlling the rate-of-heat release (combustion noise) 

•  Common fuels (e.g., gasoline and diesel fuel) have different auto-
ignition characteristics 
–  Diesel fuel is easy to ignite (high reactivity) – good for low load/low temp. 
–  Gasoline is difficult to ignite (low reactivity) – good for high load/high temp 

•  This work proposes in-cylinder fuel blending of two fuels with different 
auto-ignition characteristics to simultaneously control combustion 
phasing and rate-of-heat release 

 •  Alternative combustion mode 
controlled by fuel reactivity à 
Reactivity Controlled Compression 
Ignition (RCCI) combustion 

High Reactivity Fuel 
(Diesel fuel, bio-
diesel, DME, etc..) 

Low Reactivity 
Fuel (Gasoline, 
ethanol, natural 
gas etc…) 
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Demonstration of RCCI Performance 

•  Heavy-duty RCCI has demonstrated 
near zero NOx and soot and a peak 
gross indicated efficiency of 56%  

•  Conventional diesel shows 49% GIE at 
identical conditions with an order of 
magnitude higher NOx and soot 

Conv. Diesel 

2300 

700 K 

Temp.  
Contours 

Kokjohn et al. IJER 2011 
Hanson et al. SAE 2010-01-0864 

•  GIE improvement is primarily 
explained by reduced heat transfer  

–  Lower temperatures by avoiding near 
stoichiometric regions 

–  High temperature regions are away 
from surfaces 



    8/15  University of Wisconsin - Madison     Oct. 16th 

What are the dominant mechanisms 
controlling RCCI combustion? 

•  Answer this question using 
optical engine experiments. 

•  Optical engine has several 
windows allowing imaging of 
the spray, mixing, and 
combustion process 

•  High speed 
chemiluminescence imaging 

–  Evaluate overall reaction zone 
growth 

•  Fuel tracer fluorescence 
imaging 

–  Relate the fuel distribution prior to 
ignition to the reaction zone 
progression 

–  Evaluate heat release rate control 
using spatial stratification of fuel 
reactivity 
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High Speed Combustion Luminosity Imaging 

Bowl Window Cylinder Head Window 

Load: 4.2 bar IMEP GDI SOI:  -240°ATDC  
Speed: 1200 rpm n-heptane SOI: -57°/-37° ATDC 
Intake Temperature: 90° C Iso-octane mass %:  64 
Intake Pressure: 1.1 bar abs. Effective gain: 500 

Kokjohn et al. ILASS 2011 
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Toluene Fuel Tracer PLIF 
•  In-cylinder fuel distribution measurements using fuel 

tracer fluorescence imaging 
•  Image shortly before low-temperature heat release 

shows a stratified local octane # (PRF) distribution 
resulting from the direct-injection event 

•  Most reactive region (minimum octane #) is located 
near the center of the piston bowl rim 

•  Reactivity decreases (octane # increases) toward the 
center of the combustion chamber 

•  Fuel distribution prior to ignition correlates with 
observed ignition location and reaction zone 
progression 
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Kokjohn et al. ILASS 2011 

Diagnostic Overview 
1.  Fuels doped with 1% toluene 
2.  Toluene fluorescence excited 

by 266 nm (UV) laser sheet 
3.  Fluorescence images 

processed to show fuel 
distribution 
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RCCI Combustion Summary 

•  Combustion phasing is controlled 
by the overall fuel blend (i.e., ratio 
of gasoline-to-diesel fuel – or fuel 
reactivity) 

•    

 
•  The combustion duration is 

controlled by spatial stratification 
in the fuel reactivity 

•  RCCI combustion address the 
two primary issues of PCI 
combustion 

Uniform Reactivity Stratified Reactivity 

Kokjohn et al.  SAE 2011-01-0357 

Kokjohn et al.  SAE Int. J. of Engines 2012 
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Can bio-derived fuels be used for RCCI? 

•  RCCI depends on auto-ignition 
characteristics of the charge à 
controlled by in-cylinder blending 

•  RCCI is inherently fuel flexible (with 
two fuels with different auto-ignition 
characteristics) 

•  Example, ethanol is less reactive 
than gasoline and bio-diesel is 
(typically) more reactive than diesel 
fuel à larger differences in auto-
ignition characteristics à great fuels 
for RCCI combustion! 

Δ=63 
Δ=96 
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Can bio-derived fuels be used for RCCI? 

•  Gasoline-diesel RCCI is compared to  
E85-diesel RCCI combustion 

•  E85-diesel DF RCCI exhibits significantly 
reduced HRR compared to gasoline-
diesel RCCI à quieter operation and 
extended load range 

•  Both show near zero levels of NOx and 
GIE significantly above state of the art 
diesel engines (diesel GIE ~49% at peak) 
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Conclusions 

•  A dual fuel PCI concept is proposed using in-cylinder blending of 
two fuels with different auto-ignition characteristics 

•  Controlled PCI operation demonstrated with very high efficiency and 
near zero NOx and soot emissions over a range of loads 

•  New combustion concept addresses the two primary issues limiting 
acceptance of PCI combustion 
–  Combustion phasing is easily controlled by adjusting the overall fuel 

reactivity (e.g., gasoline-to-diesel ratio) 
–  Combustion duration is controlled by introducing spatial stratification 

into the auto-ignition characteristics of the charge 
•  RCCI combustion is inherently fuel flexible and well-suited for use 

with bio-derived fuels à engine adapts to fuel ignition characteristics 
on-the-fly to maintain peak efficiency 
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Questions? Spark Ignited 
Effective Gain = 300 

Conv. Diesel  
Effective Gain = 1 

HCCI 
Effective Gain = 500 

RCCI 
Effective Gain = 500 


