

Dynamic Distribution System: A Blueprint for Global Cities Sustainable Energy for Global Cities

2014 Energy Summit October 29, 2014

Robert Lasseter
University of Wisconsin

Sustainable *Electrical* Energy for Global Cities

Global Cities

- More renewables
- More Resiliency
- More Efficient
- Smart use of conventional fuels
- Reduced emissions

The National Academy of Engineering includes the electrical power system as one of the top engineering achievements of the twentieth century

The electric delivery system

Losses 1-2%

Distribution

Losses 40-70%

Problems with the electric delivery system

Basic Structure of the Electric System

Distribution

Generation Losses 40-70%

The system is not resilient!

Problems with the Distribution electric delivery system **Losses 2-4% Basic Structure of the Electric System** ----Color Key: Subtransmission Transmission Lines Blue: **Transmission** Customer 500, 345, 230, and 138 kV Distribution Green: 26kV and 69kV Black: Generation Step-Down ansformer Primary Customer 13kV and 4 kV **Transmission Losses 1-2%** Generator Step **Transmission Up Transformer** Customer Generating Station 138kV or 230kV Secondary Customer Generation 120V and 240V Losses 40-70% - 2/3 of energy is loss to heat*

Electric delivery system with distributed energy resources

Move more generation closer to the load centers to use the *waste heat* and *provide local* resiliency!

Distribution

Advantage of Combined Heating and Power (CHP)

 CHP delivers major boost in energy efficiency while simultaneously significantly reducing CO₂ emissions

Central generation vs. distributed energy resources

Global Cities

need to use the best of both worlds

Global City

1000s of DER in the Distribution System

Central with low CO² (Economy of scale, 100s MW)

Small, efficiency and robust (Economy of numbers, 1000s units)

Problem with 1000s of DERs

The issue is figuring out how to manage this wide, dynamic set of distributed energy resources and their control points.

Control Approaches

- Expanded TSO Concept: TSO role expands to incorporate DER at dis. level
- TSO/DSO Concept: Each distribution region has its own DSO which serves as balancing authority and market provider for sources/loads inside region.

Dynamic Distribution System Architecture

 Proposed DDS architecture is conveniently scalable over a wide range of grid sizes and configurations

Dynamic Distribution System Architecture

 Proposed DDS architecture is conveniently scalable over a wide range of grid sizes and configurations

DDS Resources

Microgrids: Example of local control

- Cluster DER and loads
- Utilize waste heat
- Operate during loss of power
- Provide local control

Microgrids are a cluster of loads and DER units which can smoothly disconnect from and reconnect to the grid.

They enhance local reliability/flexibility with significant system efficiency improvements through use of waste heat

CERTS Microgrid: Santa Rita Jail, Ca.

Summary

DDS: A Blueprint for Global Cities

- TSOs continue to play their current role as balancing authorities
 (BA) and electricity market providers (MP) at transmission level
- Each distribution region has its own DSO that serves as BA and MP for its region
- Central power plants have responsibility for delivering bulk power to distribution regions
- DSO's act to minimize volatility of power flow from central power plants to their distribution regions
 - DSO use balancing authority and markets to adjust DER power sources, energy storage, and loads to achieve local objectives

Questions?

