

Virent: Replacing crude oil as a feedstock for fuels and chemicals

Brian Blank Virent INC.

October 16th, 2013

Ending Dependence on Crude Oil

Virent Technology can Replace > 90% of the Barrel

The US consumes over 18 million barrels of oil per day; 49% is imported from foreign countries.

Organizational Capabilities

Virent- How we differ

	Gasoline/ Aromatic Chemicals					VIRENT
Hydrocarbons	Jet Fuel	Solazyme	Amyris			VIRENT
	Diesel	Solazyme	Amyris LS-9	Syntroleum Choren Sundrop Fuels Rentech		Neste Oil UOP Dynamic Fuels (Tyson/Syntroleum)
	Bio-Crude	Sapphire Cellana			Envergent (UOP/Ensyn) Kior	
	Butanol		Butamax Gevo			
Alcohols	Ethanol	Algenol	Lanz	Range Fuels Enerkem kata atech S Bio		
		Algae	Enzyamatic / Fermentation	Gasification/FT	Pyrolysis	Catalytic
		Biological		Non-Biological		

Virent's BioForming® Technology

Leading catalytic route to renewable hydrocarbon fuels and chemicals.

Virent's "Eagle" Demonstration Plant- Madison, WI

Fast and Robust

- Inorganic Catalysts
- Moderate Conditions
- Industry Proven Scalability

Energy Efficient

- Exothermic
- Low Energy Separation
- Low Carbon Footprint

Premium Drop-in Products

- Tunable Platform
- Infrastructure Compatible
- Fuels and Chemicals

Feedstock Flexible

- Conventional Sugars
- Non-Food Sugars

Virent's Capabilities

- Lab Capability (research)
 - •>20 continuous and integrated lab plants
 - •0.5- 200cc catalyst
 - •24/7 operation
 - •Flexible design

- Demonstration Capability:
 - •10,000 gpy gasoline; 5,000 gpy distillate
 - "More commercial"
 - Product volumes
 - Fleet testing
 - Fuel Registration

Virent at a Glance

The global leader in catalytic biorefinery research, development, and commercialization

>80 Employees

Financial

> \$77 MM in Equity Funding, > \$75 MM in Gov & Industry

Partners & Investors

Infrastructure

The BioForming® Process

Converting Multiple Feedstocks to High Value Hydrocarbons

Familiar to Petrochemical Industry

Similar Reactor Processing Practices
Proven Catalytic Scale-Up Engineering
Industry Experience Operating at Scale

High Quality Drop-in Products

Premium Hydrocarbon Mixtures
Tunable to Produce Desired Blends
Adaptable to Provide Chemicals
Compatible with Logistics Infrastructure

Virent Gasoline and Chemicals projects

NABC (US department of energy)

- Biomass derived motor fuels
- Techno economics of biofuels
- Project Close-out 11/2013

Shell Collaboration

- Gasoline process development & scale-up
- Collaboration completed 06/2013

Coca-Cola Joint Development

- Customer acceptance of bio-renewables
- Long-term "Path to parity" with crude

Virent's BioFormate® Product

 Due to the high energy density of aromatics reformate materials are blended in to high performance gasoline to increase octane.

	Petroleum Reformate (Vol%)	Virent BioReformate Product (Vol%)	
Paraffins	22.5	20.6	
Naphthenes	0.7	3.9	
Aromatics	60.8	64.4	
Overall Totals	84.0	88.9	
Typical RON	~95 - 105	105	

Virent's Product in Scuderia Ferrari Race Fuel

Virent has provided fuel to Ferrari/Shell for the past 3 seasons

Virent's BioFormate® A renewable source of aromatics

Reformate:

- Primary source of the world's aromatics (Benzene, Toluene, and Xylenes) which are vital building blocks for modern polymer fibers.
- Downward trending production due to shale gas and gasoline market dynamics leading to increase cost.
- Aromatics processing infrastructure would be compatible with Virent reformate for the production of PET and other polyesters

Figure: sources for aromatics.

Virent Enables 100% RR-PET

Chemicals Strategic Investors & Partners

Develop, deploy and commercialize at scale a renewable "petrochemical" platform that can utilize existing infrastructure

Feedstock Logistics

Conversion Platform

Deployment Opportunity

Customer Acceptance

- Major shareholder
- Participating in feedstock development and commercial deployment

- Platform Research & Development
- Technology provider
- Feedstock R&D
- Catalyst development
- Operations

In Progress

- Development Partner
- In existing petrochem supply chain
- Scale-Up partner
- Market channels

- Demand and supply chain "pull-through"
- Strategic alignment on alternative feedstocks
- Support validation of final product

Major Distillate Projects

Shell Collaboration

- Distillate fuel production and process development
- Collaboration completed 06/2013

FAA Award

- Jet fuel production and qualification
- \$1.5 MM Grant
- Project closeout 05/2013

DOE Award

- Cellulosic sugars to jet fuel
- \$13.4 MM Grant

Virent's Renewable Distillate

- Broad distribution of boiling points
 - Preferred over single components
- Tunable composition
 - Flexibility to maximize desired fuel

Virent Renewable Diesel Composition

*Polynuclear aromatics (2+ ring aromatics) increase particulate emissions

Virent's Renewable Jet Composition

Boiling Point

Jet Specification Evaluation Wright Patterson AFB

Specification Test	MIL- DTL-83133G Spec Requirement Ta chemicai Pro	JP-8	VIRENT				
Physical and Chemical Properties							
Heat of Combustion (measured), MJ/Kg	≥42.8	43.3	43.3				
Flash point, °C	≥38	51	40				
Freeze Point, °C	≤-47	-50	<-60				
Density @ 15°C, kg/L	0.775 - 0.840	0.804	0.805				
Distillation							
10% recovered (T ₁₀), °C	≤205	182	164				
EP, °C	≤300	265	290				
T ₉₀ -T ₁₀ , °C	≥22	62	86				
Thermal Stability							
Temperature		260°C	325°C				
Tube Deposit Rating	<3	1	1				
Change in Pressure, mm Hg	≤25	2	0				

Excellent freeze point and density due to unique Virent jet composition

High thermal stability ensures low levels of impurities

Thank you.

Brian Blank

brian_blank@virent.com

Group Leader – Catalytic Materials Virent INC. 3571 Anderson St Madison, Wi

