De-Risking & Scale-Up of Bio-Based Technologies

Bernie Steele MBI

Lansing, Michigan, USA www.mbi.org

October 16, 2013

MBI: Mission and Capabilities

- ➤ Who we are: Not-for-profit, founded in 1981, subsidiary of MSU Foundation
- ➤ **Mission**: Accelerate development, scale-up and commercialization of bio-based technologies
- ➤ What we do: develop and derisk early stage bio-based technologies, demonstrate commercial viability, transition to commercial partners
- ➤ Capabilities: biomass processing, strain engineering, bench and pilot fermentation development, downstream processing

MBI Capabilities & Resources

Biomass Processing

High Solids Processing Chem/Enzymatic Treatment Fermentation Interface

Techno-Economics

Process Modeling Life Cycle Analysis Sustainability

Analytical Chemistry

Process Monitoring Impurity Profile Diverse Techniques

Strain/Metabolic Engineering

Classical approaches Microbial genomics Fluxes and bottlenecks

Integrated Bioprocess Development & Derisking

Chemical Reactions and Modification

Higher Value Products Catalysis Applications Interface

Bench-scale Process Improvement

Design of experiments Media development Process conditions/control

Fermentation/Scale Up

Mixing and mass transfer Recovery integration Engineering data package

Recovery & Purification

Solid-Liquid Separation Reactive Distillation Product Specification

Technology Readiness for Bio-based Processes

Phase	TRL	Maturity Level
Commercial Deployment	9	Large-scale commercial operations
Common ancial Transcition	8	Semi-works-scale technology demonstration
Commercial Transition	7	Detailed engineering /plant design
Viability Demonstration	6	Scale up and pilot-scale technology validation
Technology Development	5	Production enhancements/techno- economic model
	4	Lab-scale development and integration
Feasibility Demonstration	3	Lab-scale experimental proof of concept
	2	Technology application formulated
Basic Research	1	Promising research finding

De-Risking: Disciplined, Methodical Management of Risk

Viable Technologies to Market

Pipeline Inputs

Idea Stage:

Identify a technology approach and a commercial need it addresses

Concept Stage:

➤ Identify, characterize and prioritize risks

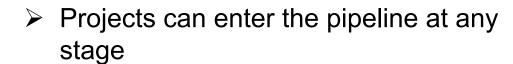
Feasibility Stage:

- Address "Deal Breaker" risks first
- Confirm approach is technically feasible

Viability Stage:

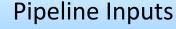
- Technology development phase, to hit commercial targets
- Process scale up to pilot scale (2-3800 L)
- Generate commercially viable technology transfer package
- Produce samples (100+ kg) for customer qualification

MBI Pipeline – Demonstrated Success



Concepts

Ideas


- We have run successful projects with organizations large & small, public & private, for-profit & not-for-profit
- Pipeline typically includes a mix of internal MBI projects and external collaborations

Case Study

AFEX™: Unlocking the Potential of Biomass

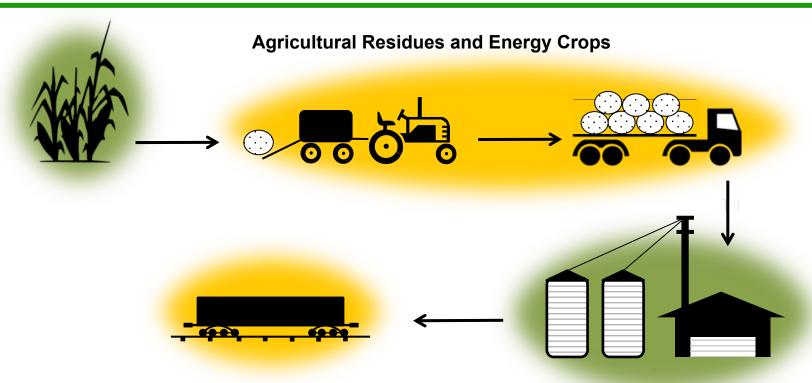
The Challenge:

Ag residue biomass is low density
Inefficient to store or transport
Potential for spoilage
Not close to biorefineries

Biomass Logistics Challenges

Requirements for a 100 million gallon/ year ethanol plant

	Corn Grain Refinery	Corn Stover Biorefinery
Bulk density (kg/m³)	700	120
Collection radius (miles)	20	40
Farms to contract with	N/A	2600
Storage footprint	37 acres	630 acres



Images courtesy of NREL (www.nrel.gov)

Decentralization Solution: Move Processing Closer to the Farm

Convert regional, distinct biomass sources into dense, stable, shippable intermediate commodities

Regional Biomass Processing Depot

Key Elements of Regional Biomass Processing Depots (RBPDs)

Functions of RBPDs:

- Purchase biomass (corn stover, rice straw, grasses) from growers
- Short term storage of biomass
- > Size reduction of biomass, separate dirt
- Biomass densification
- Biomass pretreatment?

Pretreatment processes for RBPDs require:

- Low capital costs
- Economic scale-down (100-200 tons/day)
- Suitability to a wide variety of feedstocks
- Low water use
- Simple operation

The Solution:

AFEXTM

Ammonia Fiber Expansion Process "Unlocking the Power of Biomass"

A *transformational technology* to create a cost efficient, storable, readily transportable *biomass commodity* utilizing *decentralized* AFEX depots

The AFEX Solution:

Transformational Technology

Multiple viable market applications

Decentralized biomass processing

The AFEX Process

AFEX Reactor System

Pre-heat, NH₃ Charge, Soak,
Expansion, NH₃ Stripping

The 5 Step AFEX Process:

1. Pre-steam (add moisture & heat)
2. Ammonia charge
3. Ammonia soak
4. Expansion

Pre-heat, NH₃ Charge, Soak,
Expansion

Drying,
Pelletizing

5. Ammonia stripping & recycle

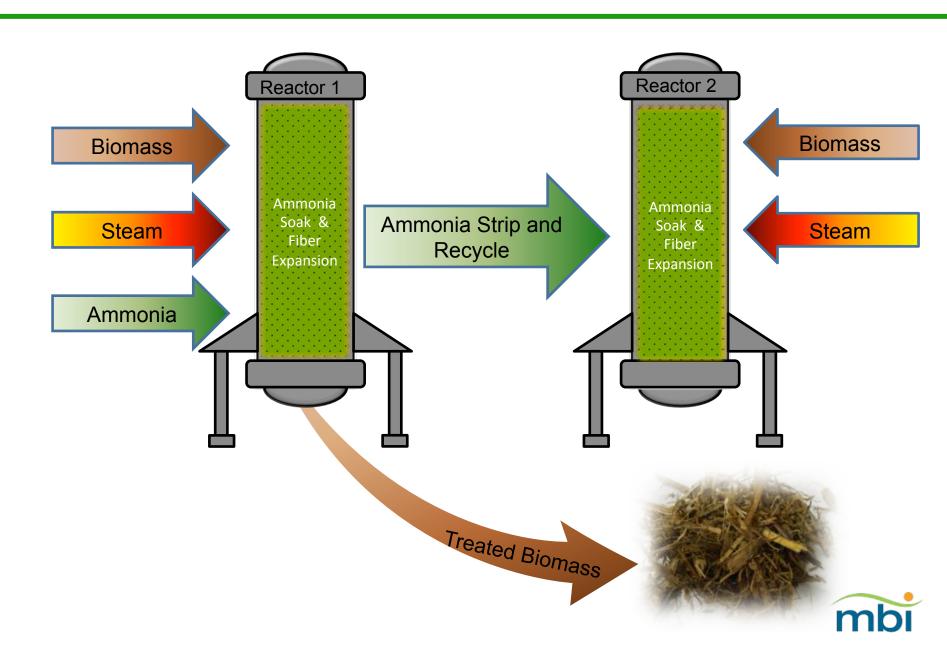
AFEX Is A Transformational Technology

AFEX Process:

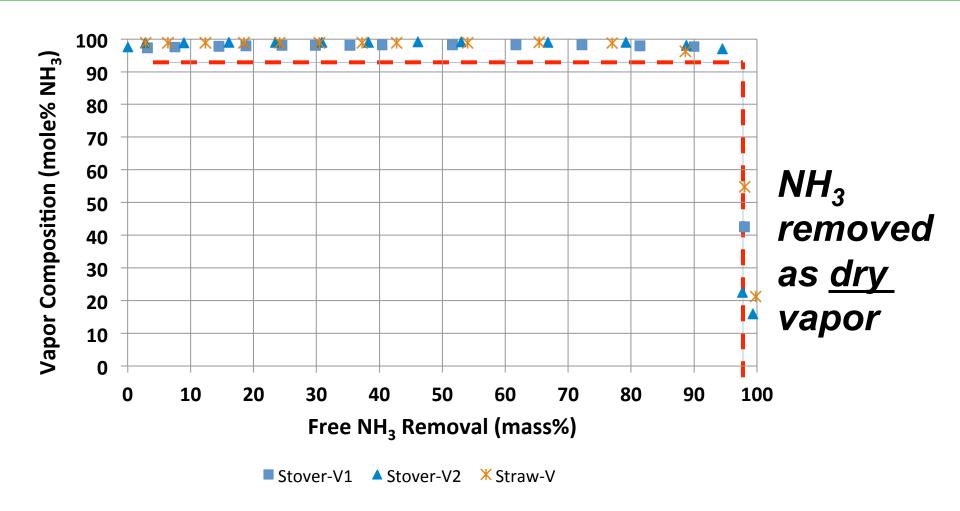
- Suitable for many types of grasses and agricultural residues
- No degradation of hemicellulose
- No wash streams or liquid waste
- Low chemical usage due to ammonia recycle
- Improves the digestibility of biomass for use as a hydrolysis/fermentation feedstock or directly as an animal feed

Impact on RBPD Concept:

- > Low capital cost
- Easy to scale down
- Simple operation
- Stable, conversion-ready product with multiple markets



MBI develops lowcost AFEXTM reactor


Performance in 10-L prototype meets ideal-batch reactor benchmarks

Ammonia recovery & reuse demonstrated

The AFEX Process

Ammonia Recovery & Recycle

Pilot Scale AFEX

- DOE Award 2011
 - \$5.3 Million
 - 100-fold Scale-up
- Project partners
 - Idaho National Lab
 - Michigan State University
- Engineering/design 2011-2012
- Installed March 2013
- Bed dimensions (2):
 - 17 inch D X 110 inch L
 - 30 40 kg biomass per bed
- ➤ In operation since July 2013

Bruce Dale University Distinguished Professor Michigan State University

Unique AFEX Attribute - Densification

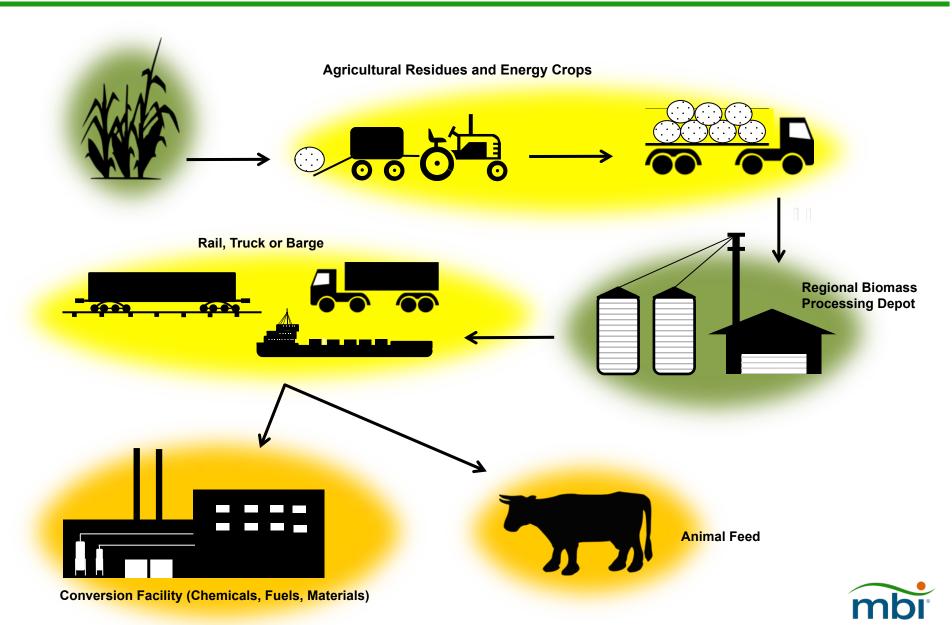
AFEX-treated, loose

AFEX-treated, pellets

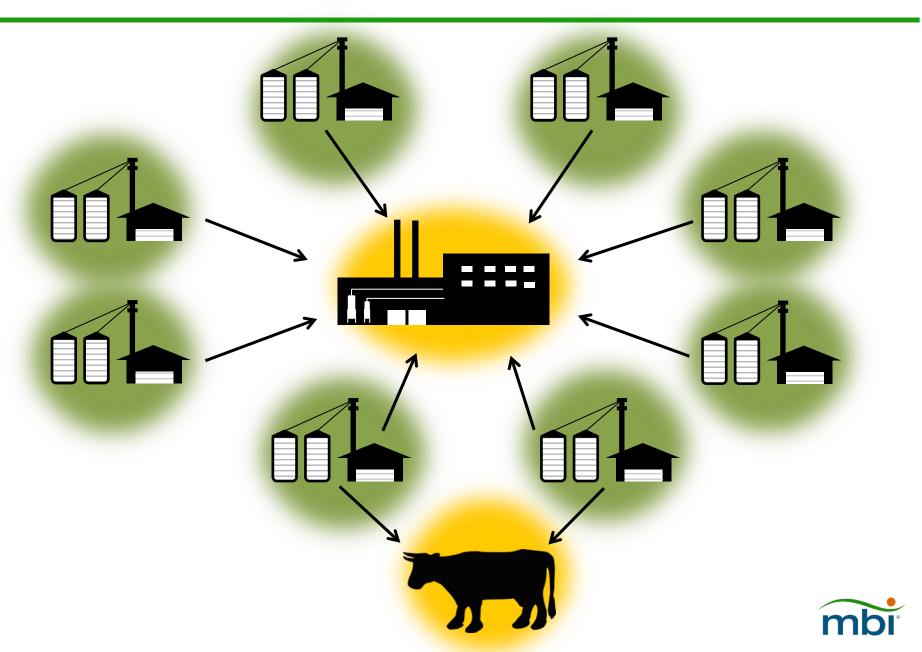
Wheat straw

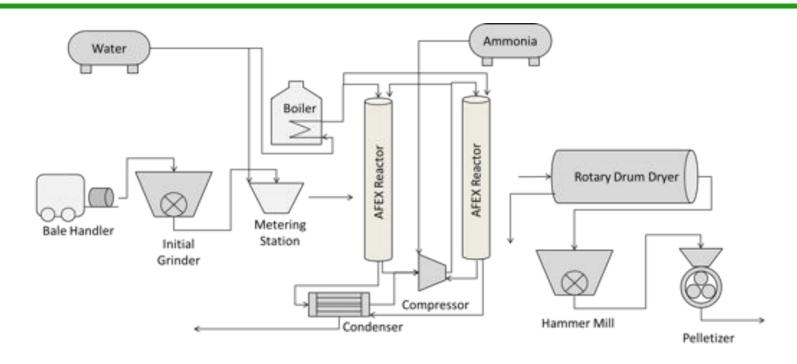
Bulk Density Increases from <60 kg/m³ to >500 kg/m³

The AFEX Solution:


Transformational Technology

Decentralized biomass processing


Multiple viable market applications


Biomass Processing Depots

Biomass Processing Depots

Packed Bed AFEX for RBPDs

Upstream of AFEX

Bale storage, initial (<1") particle size reduction, moisture adjustment

Downstream of AFEX

 Rotary dryer, final (<1/4") particle size reduction, pelletization, pellet storage

For 100 TPD capacity

Bed dimensions (4):

- 5 foot D X 30 foot L
- 1,500 2,000 kg biomass per bed

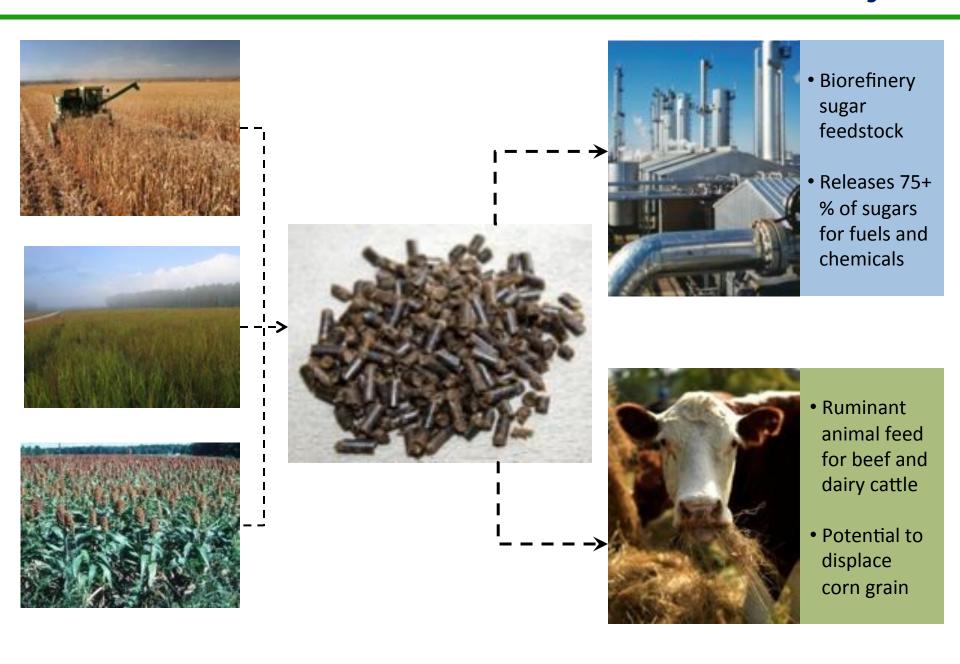
AFEX Processing Costs = \$50 to \$75 per ton

Assumptions:

- Throughput 100-200 metric tons per day
- Brownfield site, some existing infrastructure
- Capital investment \$8.5 \$15 million

Category	Cost Breakdown (\$ per ton biomass)
Labor	9 - 17
Maintenance	4 - 5
Utilities	12-13
Ammonia	12-16
Subtotal	35-51
Depreciation	13-16
Cost of Capital/Interest	5-7
Total	50 - 75

The AFEX Solution:


Transformational Technology

Decentralized biomass processing

Multiple viable market applications

AFEX Pellets: A Versatile Biomass Commodity

Sugars for Biorefinery High Solid Loading Hydrolysis and Fermentation

Enzyme Hydrolysis of AFEX Pellets

Pelleted AFEX treated corn stover

Water + enzyme

20% solid loading

0 hr

4 hr

1 hr

Summary:

Enzyme:

@50°C

shaker

200 RPM

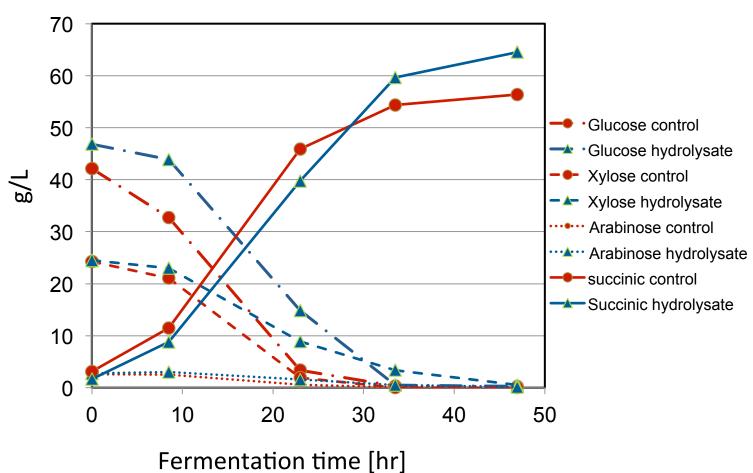
Ctec 3+ Htec 3(Novozymes)

Enzyme loading:

20mg of enzyme protein/ g glucan

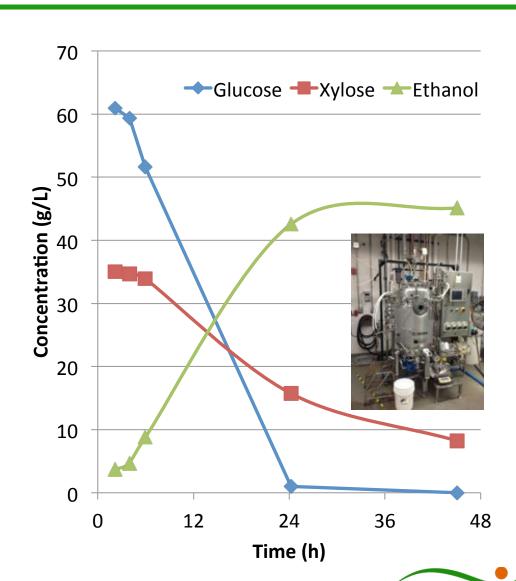
Hydrolysis Time: 72 hr

Glucose yield: 75%


Xylose yield: 69%

Biomass: Pelleted AFEX treated Corn Stover

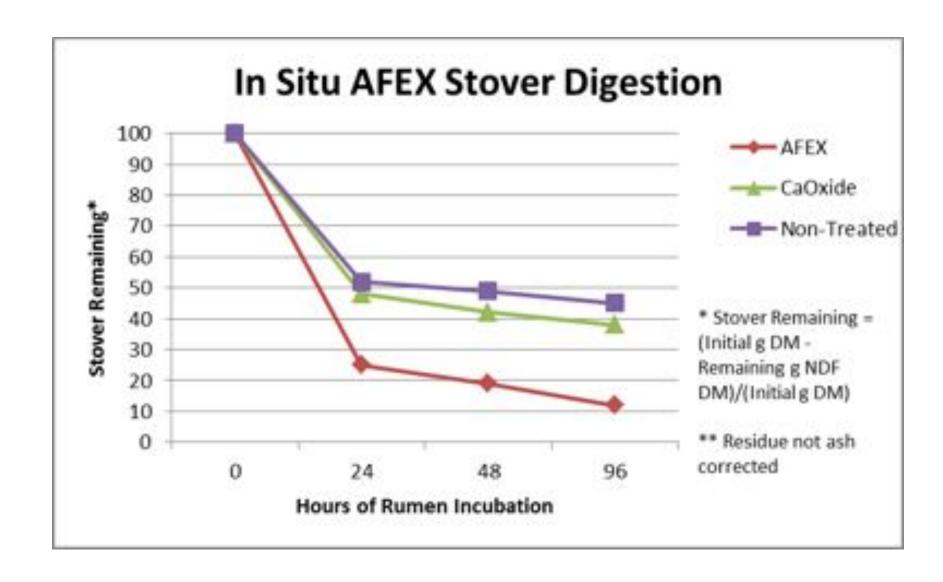
Product: Succinic Acid


Microorganism: Actinobacillus succinogenes

Fermentation of AFEX Pellets - Ethanol

- 20% solids loading of AFEX pellets
- Sterilized water and enzymes added
- Did not remove unhydrolyzed residue prior to inoculation
- SHF fermentation using *Z. mobilis* (utilizing both C5 and C6)
- Glucose completely consumed within 24 hours
- Xylose ~80% consumed after 48 hours

Value Proposition: Biorefinery Feedstock


Category	Cost (\$ per ton biomass)
Harvested Biomass	50 - 70
Depot Processing	50 - 75
Subtotal	100 - 145
Transport to biorefinery	5 - 10
Enzyme hydrolysis at biorefinery (NREL Estimate)	25 - 50
Total	\$130 - 205

- At yields of 1000 pounds of sugar per ton of biomass,
 sugar costs are estimated at \$0.13 \$0.20 per pound
- Corn sugar cost is \$320/ton (16 cents/lb) at \$6 per bushel

AFEX-treated Biomass as a Rumen Feed Ingredient

Rumen Feed Ingredient

Pellets break down in the rumen to release sugars and provide a nutritional energy source similar to that provided currently by grain.

MBI recent progress and development in using AFEX treated pellets for animal feed

- In 2012:Completed preliminary palatability trials in sheep using pellets made with AFEX treated corn stover with positive results.
- In 2013: Through collaboration with Michigan State University (MSU) a funding source was secured for a cattle feed efficacy trial.

Cattle Feeding Trial at Michigan State University

Steven Rust

Professor, Beef Cattle Nutrition & Management Department of Animal Science

Ongoing Cattle Feed Trial

Trial started on September 19th 2013

- Location: MSU Beef Cattle Teaching and Research Center, led by Dr. Steve Rust, Department of Animal Science
- Purpose: To determine if pelleted AFEX treated corn stover can be substituted for corn grain as an energy component in feed
- Duration: 160 days
- Number of cattle: 24 Holstein beef steers, 12 on standard feedlot diet as control, and 12 on diet containing 30% AFEX treated corn stover pellets
- MBI's role: Providing 10 tons AFEX treated corn stover pellets
- Collected data: Palatability, weight gain, carcass meat quality

Value Proposition: Animal Feed

Category	Cost (\$ per ton pellets)
Harvested Biomass	50 - 70
Depot Processing	50 - 75
Subtotal	100 - 145
Transport to Market	0 - 10
Total	100 - 155

- Estimated costs of AFEX pellets is \$100 \$155 per ton
- At \$6 per bushel, corn grain costs \$214/ton

The AFEX Solution: Global Impact

Opportunity:

2 Billion tons of agricultural residue/yr from corn, wheat, rice

Potential Impact:

- 1 Billion tons of AFEX pellets as animal feed = 1.2 Billion tons of milk = nutritional protein demand for 25% of world population
- 1 Billion tons of AFEX pellets as biorefinery feedstock could replace 56 Billion gallons of gasoline, 40% of US annual demand
 - Elimination of 1.3 Billion barrels of oil consumption = 680
 Million tons of CO₂ reduction, 9% of US annual emissions
- Rural depots create significant opportunity for economic development and new jobs

Acknowledgements

- ☐ This material is based upon work supported by the Department of Energy, Golden Field Office under Award No. DE-EE0005071 and Subaward No. FAR-0018581 under North Dakota State University Prime Award No. R-010-022 from the North Dakota Industrial Commission.
 - Disclaimer: This report was prepared as an account of work sponsored by an agency of the
 United States Government. Neither the United States Government nor any agency thereof, nor
 any of their employees, makes any warranty, express or implied, or assumes any legal liability or
 responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
 product, or process disclosed, or represents that it use would not infringe privately owned rights.
 Reference herein to any specific commercial product, process, or service by trade name,
 trademark manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
 recommendation, or favoring by the United States Government or any agency thereof. The views
 and opinions of authors expressed herein do not necessarily state or reflect those of the United
 States Government or any agency thereof.
- ☐ Animal feed trial study is supported by Michigan State University
- MBI holds the exclusive license to distribute the AFEX™ technology. AFEX™ is a trademark of MBI

"Unlocking the Power of Biomass"

Thank You!

